96.(ABD)
$$A = Ca(OH)_2$$
, $B = NH_4HCO_3$, $D = NH_4Cl$, $C = Na_2CO_3$, $E = CaCl_2$, $F = CaCO_3$

$$Ca(OH)_2[A] + Na_2CO_3[C] \longrightarrow CaCO_3[F] + 2NaOH$$

$$CaCl_2[E] + Na_2CO_3[C] \longrightarrow CaCO_3[F] + 2NaCl$$

97.(D)

Alloys	Composition
Magnalium	Al - 95%, Mg - 5%
Duralumin	Al - 95%, Cu - 4%, Mg - 0.5%, Mn - 0.5%
Aluminium bronze	Cu - 90%, Al - 9.5%, Sn - 0.5%
Elektron	Mg ~ 94%, Zn ~ 0.5%, Rare earth ~ 4%, Zr ~ 1%

- **98.(C)** Due to much lower freezing point of eutectic mixture of $CaCl_2/H_2O$
- **99.(C)** BeF₂ + NaF \longrightarrow Na₂[BeF₄] Here Be goes with anion
- **100.(C)** Superoxides are the strongest oxidising agents.

101.(ABCD)

All are basic oxides

102.(C)
$$\operatorname{NaNO}_2 + \operatorname{NaN}_3 \longrightarrow \operatorname{Na}_2\operatorname{O}_{(\text{Pure sodium oxide})} + \operatorname{N}_2$$

103.(B) Hydrolith-A salt like Binary compound (CaH₂) used as a reducing agent and source of hydrogen.

104. [A-q] [B-s] [C-r, s] [D-r]

 $CaCl_2 \cdot 6H_2O$

Na₂CO₃·10H₂O - Washing soda

Na₂SO₄ · 7H₂O and Na₂SO₄ · 10H₂O (Glauber's salt)

 $MgSO_4 \cdot 7H_2O$ (Epsom salt)

105. [A-q] [B-p] [C-r] [D-q] [E-r, s]

NaOH is prepared by electrolysis of Brine i.e. NaCl.

 CaCl_2 is used in solvay process in the preparation of washing soda.

 $\mathrm{MgCl}_2\,$ is prepared by Dow's process.

Chlorine is produced at anode in electrolysis of Brine.